

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹³C NMR Chemical Shifts Substituent Effects of (E)- and (Z)-N-ethyl-N-Methylamides

Helio G. Bonacorso^a; Miguel S. B. Caro^a; Nilo Zanatta^a; Marcos A. P. Martins^a

^a Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

To cite this Article Bonacorso, Helio G. , Caro, Miguel S. B. , Zanatta, Nilo and Martins, Marcos A. P.(1992) ¹³C NMR Chemical Shifts Substituent Effects of (E)- and (Z)-N-ethyl-N-Methylamides', Spectroscopy Letters, 25: 8, 1207 — 1220

To link to this Article: DOI: 10.1080/00387019208017859

URL: <http://dx.doi.org/10.1080/00387019208017859>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

¹³C NMR CHEMICAL SHIFTS SUBSTITUENT EFFECTS
OF (E)- AND (Z)-N-ETHYL-N-METHYLMIDES.

KEY WORDS ¹³C NMR of Amides

(E)- and (Z)-N-Ethyl-N-methylamides

¹³C NMR Substituent Effects

Helio G. Bonacorso, Miguel S.B. Caro, Nilo Zanatta * and
Marcos A.P. Martins *.

Departamento de Química, Universidade Federal de Santa Maria,
97.119 Santa Maria, RS Brazil.

ABSTRACT

Carbon-13 NMR chemical shifts of a series of (E)- and (Z)-N-ethyl-N-methylamides [RC(O)N_{Et}Me, R= H, Me, Et, *i*-Pr, *t*-Bu, CF₃, ClCH₂, Cl₂CH, Cl₃C, BrCH₂, Br₂CH, Br₃C and ICH₂] are reported. The α -carbon and carbonyl carbon chemical shifts are correlated with the empirical α -substituent effect and Charton's electrical parameter (σ_1), respectively. The N-alkyl carbon resonances were attributed mainly to the γ - and δ -effects of R.

* Authors to whom correspondence should be addressed.

INTRODUCTION

Although aliphatic N,N-dialkylamides have been extensively studied by ^{13}C NMR spectroscopy¹⁻⁴ there is a lack of ^{13}C NMR data for the N-ethyl-N-methylamides in the literature. In this work the ^{13}C NMR spectra of 13 compounds were recorded, and *syn*- and *anti*-N-substituents carbon resonances for (*E*)- and (*Z*)-isomers were assigned through a series of homo- and heteronuclear COSY experiments, as well as DEPT 90° and 135°, and using proton chemical shifts⁵. The ^{13}C chemical shifts are discussed in terms of substituent electronic and steric effects, and empirical relationships between the α -effect of the substituent and the α -carbon resonance are examined. The N-alkyl carbon resonances are analyzed in terms of γ - and δ -effects of the substituent.

RESULTS AND DISCUSSIONAssignments

The resonance signals of the *syn*- and *anti*-N-alkyl groups in (*E*)- and (*Z*)-isomers of N-ethyl-N-methylamides 1-13 could be unambiguously assigned as a result of homo- and heteronuclear COSY experiments, DEPT 90° and 135°⁵. To select non-superimposed signals, chloroform-d₁ and benzene-d₆ were used as solvents.

TABLE 1

¹³C NMR chemical shifts^a of N-Ethyl-N-methylamides 1-13.

Compd.	$\alpha\text{-CH}_nX_3-n$		C=O ^b		N-CH ₃		N-CH ₂		N-C-CH ₃	
	Z	E	Z / E	Z	E	Z	E	Z	E	Z
1	-	-	161.9	162.1	33.6	28.6	38.5	43.9	11.6	13.8
2	21.6	20.6		169.8	35.2	32.2	41.8	45.0	12.0	13.1
3	26.8	26.0		173.2	34.5	32.6	42.3	44.3	12.3	13.5
4	30.1	29.8	176.3	177.3	34.5	32.9	42.3	44.0	12.0	13.8
5	38.5	38.5		176.8	35.1	35.1	44.4	44.4	12.5	12.5
6	116.4	116.4		157.4	34.4	34.1	44.9	44.8	11.1	13.1
7	40.8	40.2	164.8	165.0	33.8	31.9	42.0	43.8	10.9	12.5
8	65.3	64.8	162.3	162.8	34.8	33.7	44.1	44.6	11.4	13.2
9	92.7	92.7		160.6	37.6	36.0	47.1	47.1	11.2	12.6
10	26.3	25.5	166.1	166.2	35.2	32.8	42.8	45.1	11.5	13.2
11	35.8	34.7	162.8	163.3	35.5	33.9	44.2	45.2	11.3	13.2
12	28.4	28.4		159.3	36.4	36.4	47.0	47.0	11.6	11.6
13	-3.2	-4.9	168.3	170.9	36.0	33.4	43.4	46.0	11.4	13.1

^aIn ppm, downfield from TMS. Solvent CDCl₃. The chemical shifts of the β -carbon for the compounds 3-5 are: 9.6(Z) and 9.2(E); 19.4(Z) and 18.8(E); 28.1(Z) and 28.1(E) (ppm).

^bThe chemical shifts of the Z and E isomers cannot be unambiguously assigned.

Within 20°-130°C, the influence of both the solvents and the temperature on the isomeric equilibrium can be omitted⁵.

These experiments allowed the assignment of the upfield resonances to the (E)-N-CH₃ and (Z)-N-C-CH₃ groups for the N-Ethyl-N-methylamides 1-4, 6-11, 13 (Table 1). The compounds 5, 12

show superimposed ^{13}C NMR signals for *syn*- and *anti*-N-substituents at room temperature. It was also attributed the upfield resonance signals for the (Z)-N-CH₂ group of amides 1-4, 7, 8, 10, 11, 13, and for amides 5, 6, 9, 12 the (Z)- and (E)-N-CH₂ groups exhibit superimposed ^{13}C NMR signals for *syn*- and *anti*-N-substituents at room temperature (Table 1).

α -Carbon and Carbonyl Carbon

The substituent effects on the α -carbon and carbonyl carbon chemical shifts in carbonyl compounds should correspond to the complex contribution of the electronic, steric and magnetic anisotropy effects of the substituents¹⁻³.

The relationships of ^{13}C NMR data of α -carbon to the substituent effects shows to deviations from linearity on increasing the atomic number of the halogen-substituent. This fact was attributed to a diamagnetic contribution to the chemical shift due to the magnetic anisotropy of the halogen atom^{6,7}. The same relationships for atom substituents of the 1st row of the periodic table also showed deviations from linearity. This deviation can be explained by an orbital interaction^{6,7,11}. On the other hand, for α -alkyl carbons of α -alkylamides the differences of the chemical shifts depend mainly on steric effects⁴.

A similar deviation from linearity was observed when the α -carbon chemical shift of a series of α -hetero-substituted

N,N-diethylamides were plotted against Pauling's electronegativities and electronic parameters defined by Taft, Charton, and Inamoto⁴.

In this work, the same trend is shown for α -carbon chemical shifts already observed for N,N-diethylamides when these values were plotted versus the electronic and steric parameters mentioned above. Therefore, the α -carbon chemical shifts of the N-ethyl-N-methylamides under investigation correlate with the empirical α -effect of the Y substituents (effect of Y on the chemical shifts of the substituted methanes⁸, cf. Table 3). The plot of α_Y values versus α -carbon chemical shifts shows a good correlation (for (E) and (Z) plots, $r=0.995$). Thus, the chemical shift of α -CH_nX_{3-n} carbons of the isomers (E) and (Z) of N-ethyl-N-methylamides 2-13 can be predicted by using Eq. 1 and 2.

$$(E)\delta_{CH_nX_{3-n}} = 0.86 \alpha_Y + 16.34 \quad (1)$$

$$(Z)\delta_{CH_nX_{3-n}} = 0.85 \alpha_Y + 17.19 \quad (2)$$

$n = 1, 2$, or 3.

The difference between the (E) and (Z) α -carbon chemical shifts is caused by the considerable steric compression effect² in the (E)-isomer exerted by the N-ethyl group on the R group.

leading to an upfield shift in relation to the (Z)-isomer. This evidence could be confirmed through the similarity of the angular coefficients of Eq. 1 and the corresponding equation for N,N-diethylamides⁴: $\delta_{\alpha-CH_2} = 0.88 \alpha_Y + 17.22$ ($r=0.989$).

Substituent effects on the carbonyl carbon chemical shifts have been extensively studied⁹⁻¹². Stothers and Lauterbur⁹ attributed the observed upfield shift of chloroacetone carbonyl carbon to the inductive effect of the chlorine atom, which reduces the polarization of the carbonyl group double bond. These explanation can be extended to the (E)- and (Z)-isomers of the α -halo-amides 6-13 presented here. Charlton's electrical parameter¹³ (σ_1) (cf. Table 2) shows a linear correlation (for (E) and (Z) plotting, $r=0.948$ and $r=0.977$, respectively) with the carbonyl carbon chemical shifts when the data for the alkylamides 2,4,5 are omitted (Eq. 3 and 4).

$$(E)\delta_{C=O} = -38.8 \sigma_1 + 173.8 \quad (3)$$

$$(Z)\delta_{C=O} = -37.5 \sigma_1 + 173.0 \quad (4)$$

The carbonyl carbon chemical shifts of α -alkyl N-ethyl-N-methylamides(2-5) show straight dependence on the bulkness of the α -alkyl substituent.

The difference between the (E) and (Z) carbonyl carbon chemical shifts for some α -mono- or α,α -di-substituted amides

TABLE 2

The α effect^a (α_Y), Charton's electronic (σ_I) and steric (ν_s) parameters^b for some substituents.

Y	α_Y	R	σ_I	ν_s
H	0	Me	-0.01	0.52
Me	8.0	Et	-0.01	0.56
Me ₂	18.2	i-Pr	0.01	0.76
Me ₃	27.3	t-Bu	-0.01	1.24
F ₃	-	F ₃ C	0.40	0.91
Cl	26.1	ClCH ₂	0.17	0.60
Cl ₂	55.2	Cl ₂ CH	0.28	0.81
Cl ₃	79.7	Cl ₃ C	0.36	1.38
Br	11.2	BrCH ₂	0.20	0.64
Br ₂	22.6	Br ₂ CH	0.28 ^c	0.89
Br ₃	13.4	Br ₃ C	0.35 ^c	1.56
I	-19.5	ICH ₂	0.17	0.67

^a In ppm. ¹³C chemical shift data for substituted methanes, Ref. 8, p.199.

^b Charton's electronic parameter from Ref. 13a, p.143, and steric parameter from Ref. 13b, p.269.

^c Calculated from Ref.13b, p.231.

can be explained on the basis of the conformational analysis of several mono-substituted N,N-diethylamides by IR spectroscopy, which gave evidence for a *cis* and *gauche* equilibrium of the $\text{YCH}_2\text{-C(O)}$ conformers¹⁴. Thus, it was expected that asymmetrical

N-substituents have an effect on the *cis/trans* conformer equilibrium and that these changes are reflected by different effects on the (*E*) and (*Z*) carbonyl carbon magnetic neighborhood.

N-Ethyl and N-Methyl Carbons

In comparison with N-ethyl-N-methylamides reported here, the (*E*)- CH_3 and the (*Z*)- CH_2 groups are shielded for about 3-5ppm and 2-5ppm, relative to the (*Z*)- CH_3 and the (*E*)- CH_2 groups, respectively.

N,N-Dialkylamides are known² to exhibit different chemical shifts for the *syn*- and *anti*-carbon atoms to the oxygen atom of the carbonyl group. Levy and Nelson² attributed these differences to the steric compression effect of the carbonyl oxygen atom on the *syn*-carbon atoms leading to an upfield shift, in addition to the electrical field shielding effect due to the oxygen atom¹.

Fritz et. al.³ explained the differences between *syn*- and *anti*-carbon shielding by comparison with olefins. The α -methylene carbon in a *trans*-olefin is deshielded by 5.7ppm in comparison with a *cis*-olefin; this deshielding effect is small for a β -carbon and vanishes for a γ -carbon atom.

As previously found, the major contribution to the differences in chemical shift values of the *syn*- and *anti*-N-alkyl groups for N,N-diethylamides in relation to N,N-dialkylformamides were derived from *trans*- and *cis*-olefin effects^{3,4}, respectively.

The differences between the N-alkyl carbon chemical shifts of the α -mono-substituted N,N-diethylacetamides were attributed similarly to the trans- and cis-olefin effect and the steric compression effect⁴.

The chemical shift data of N-ethyl-N-methylamides 1-13 described here were similarly analyzed and led to an estimation of the trans- and cis- γ effects of the R group on the syn- and anti-N-substituents, respectively; the values are presented in Table 3. The corresponding δ effects on the syn- and anti-N-C-CH₃ groups are also included.

Table 3 shows that the trans- γ effects of the (E)-N-CH₃ and the (Z)-N-CH₂ groups have similar values (3.3 - 8.6 ppm) while the cis- γ effects of the (Z)-N-CH₃ and the (E)-N-CH₂ groups display values between 0-4.0 ppm. There is a close resemblance of trans- γ effects of (Z)-N-CH₂ and cis- γ effects of (E)-N-CH₂ with trans- γ effects of the syn-N-CH₂ and cis- γ effects of the anti-N-CH₂ of N,N-diethylamides previously studied⁴ (corresponding to compounds 1-3, 7, 10, 13). This shows that the ¹³C chemical shifts of N-substituents of the N-ethyl-N-methylamides 1-13 behave like two series of compounds: N,N-dimethylamides and N,N-diethylamides.

The order for the trans- γ and the cis- γ effects was similar to that previously observed⁴. This suggests the predominance of the γ -effect as established in olefins³. However, it was also observed that the differences of the cis- γ effect of the

TABLE 3

Gamma (γ) and delta (δ) effects^a on the $N-CH_3$, $N-CH_2^-$, and $N-C-CH_3$ carbon chemical shifts for *Z* and *E* isomers of compounds 1-13.

R	Compound	$N-CH_3$		$N-CH_2$		$N-C-CH_3$	
		<i>Z</i>	<i>E</i>	<i>Z</i>	<i>E</i>	<i>Z</i>	<i>E</i>
H	1	0	0	0	0	0	0
Me	2	1.6	3.6	3.3	1.1	0.4	-0.7
Et	3	0.9	4.0	3.8	0.4	0.7	-0.3
<i>i</i> -Pr	4	0.9	4.3	3.8	0.1	0.4	0
<i>t</i> -Bu	5	1.5	6.5	5.9	0.5	0.9	-1.3
F_3C	6	0.8	5.5	6.4	0.9	-0.5	-0.7
$ClCH_2$	7	0.2	3.3	3.5	-0.1	-0.7	-1.3
Cl_2CH	8	1.2	5.1	5.6	0.7	-0.2	-0.6
Cl_3C	9	4.0	7.4	8.6	3.2	-0.4	-1.2
$BrCH_2$	10	1.6	4.2	4.3	1.2	-0.1	-0.6
Br_2CH	11	1.9	5.3	5.7	1.3	-0.3	-0.6
Br_3C	12	2.8	7.8	8.5	3.1	0	-2.2
ICl_2	13	2.4	4.8	4.9	2.1	-0.2	-0.7

^aIn ppm. The γ -effect refer to the observed alterations of $N-CH_3$ and $N-CH_2^-$ chemical shifts, and the δ -effect refer to the observed alterations of $N-C-CH_3$ chemical shifts, using N -ethyl- N -methylformamide (1) as reference compound.

^bThe *cis*- and *trans*- effects are effects of the R group on anti- and syn-carbon atoms to oxygen of the carbonyl group, respectively.

(Z)-N-CH₃ and (E)-N-CH₂ groups depend on the steric effect of R within the series of mono-, di- or tri-substituted compounds, as well as the α -chlorinated and α -brominated series. On the other hand, the differences of the trans- γ effects on the (E)-N-CH₃ and (Z)-N-CH₂ groups have surprisingly shown a narrow correlation with Charton's steric parameter¹³ of R throughout the series of compounds 2-13. The existence of this type of correlation may suggests an indirect steric interaction ('gear effect')¹⁵.

The cis- δ and trans- δ effects exhibit small values between -2.2 and -0.9 ppm, which are apparently randomized. This could be explained by the sum of the competitive effects already mentioned which contribute to the chemical shift differences of the N-C-CH₃ groups, according to the position on space of these groups in relation to the magnetic anisotropy of the carboxamide plane¹⁶.

EXPERIMENTAL

Compounds

N-Ethyl-N-methylamides 1-13 were prepared as described previously⁵.

Spectra

The ¹³C NMR spectra were recorded at 20.15 MHz on a BRUKER AC-80A spectrometer in the FT mode (0.5M solution in CDCl₃, 0.1%

TMS as internal standard), in a 5mm i.d. sample tube. The conditions were as follows: deuterium internal lock, probe temperature 35°C, pulse width 1.6μs, flip angle 30°, acquisition time 0.8s, spectral width 5000Hz, pulse repetition time 1.3s, number of transients 6000, data points 8K.

The DEPT experiments were recorded using the pulse sequence D1-90°(¹H)-D2-180°(¹H), 90°(¹³C)-D2-PO(¹H), 180°(¹³C)-D2-FID; recycle delay 1/2 J(CH) = 3.3ms; phase angle 90° at 16.8μs and 135° at 25.2μs. The other acquisition parameters were the same as for the ¹³C NMR spectra.

Homonuclear chemical shift correlation (COSY 45) experiments were carried out by using the pulse sequence delay 90°-t₁-45°-acquisition; the relaxation delay was 1s, the 90° pulse was 4.5μs, and 1s relaxation delay was used. A total of 16 transients were collected per time unit; 256 time increments were applied to characterize the t₁ domain and 1024 points were used to characterize t₂, and a zero filling once in the t₂ domain was applied.

Heteronuclear chemical shift correlated spectra were obtained by using the pulse sequence delay 90°(¹H)-t_{1/2}-Δ₁-90°(¹H)-90°(¹³C)-Δ₁-acquisition with decoupling in both dimensions. A 1s recycling delay was used, and the delay times Δ₁ = 3.5ms and Δ₂ = 1.75ms. The 90°(¹H) pulse was 16.8μs and the 90°(¹³C) pulse was 4.8μs. The spectral width in the t₂(carbon) domain was 893 Hz and in the t₁(proton) domain 332 Hz;

4096 points were used in the t_2 domain and 256 time increments defined the resolution of the t_1 domain; a total of 300 transients were applied per increment.

Acknowledgements

The authors thank Dr. B. Nagel for reading the manuscript and for his valuable suggestions. Financial support from the *Conselho Nacional de Desenvolvimento Científico e Tecnológico* (CNPq), and the *Deutsche Gesellschaft für Technische Zusammenarbeit* (GTZ), and the fellowships from the CNPq are also acknowledged.

REFERENCES

- 1.W. McFarlane, *J.Chem.Soc.Chem.Common.* 418 (1970).
- 2.G.C. Levy and G.L. Nelson, *J.Am.Chem.Soc.* 94, 4897 (1972).
- 3.H. Fritz, P. Hug, H. Santer and T. Winkler, *Org.Magn. Reson.* 16, 36(1981).
- 4.R. Rittner, M.A.P. Martins and G. Clar, *Magn.Reson.Chem.* 26, 73 (1988).
- 5.H.G. Bonacorso, M.S.B. Caro and M.A.P. Martins, *Química Nova*, 11, 266 (1988).
- H.G. Bonacorso, *Dissertação de Mestrado, Universidade Federal de Santa Maria, Brazil*, (1988).
- 6.H.Spieecke and W.G. Schneider, *J.Chem.Phys.* 35, 722 and 731 (1961).

7.T.Shaefer, W.F. Reynolds and T. Yonemoto, *Can.J.Chem.* **41**, 2969 (1963).

8.E. Breitmaier and W. Voelter, *¹³C Nuclear Magnetic Resonance Spectroscopy*, 2nd Ed., Verlag Chemie, Weinheim (1978).

9.J.B. Stothers and P.C. Lauterbur, *Can.J.Chem.* **42**, 1563 (1964).

10.M. Yalpani, B. Modarai and E. Khoshdel, *Org.Magn.Reson.* **12**, 254 (1979).

11.P. Metzger, E. Casadevall, A. Casadevall and M.J. Poet, *Can.J.Chem.* **58**, 1503 (1980).

12.R. Rittner, in *Recent Advances in Organic NMR Spectroscopy*, edited by J.B. Lampert and R. Rittner, p.127, Editora da Unicamp, Campinas, 1987.

13.(a) M. Charton, *Prog.Phys.Or.Them.* **13**, 119 (1981).
(b) M. Charton, in *Design of Biopharmaceutical Properties Through Prodrugs and Analogs*, p.228, ed. by E.B. Roche, American Pharmaceutical Association, Washington, DC (1977).

14.M.A.P. Martins, R. Rittner and P.R. Olivato, *Spectrosc.Lett.* **14**, 505 (1981).

15.L.L. Graham, G. Vanderkooi and J.A. Getz, *Org.Mag.Resin.* **9**, 80 (1977).

16.M.A.P. Martins and R.Rittner, *Org. Magn. Reson.* **14**, 522 (1980).

Date Received: 05/15/92
Date Accepted: 06/19/92